HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
hiện tượng ngày ngắn đêm dài
Cho tam giác ABC có Góc A=90o ; BD là phân giác của góc B (D thuộc AC).Trên tia BC lấy điểm E sao cho BA=BE
a) Chứng minh DE vuông góc với BE
b) Chứng minh BD là trung trực của AE
ĐỀ ĐÓ
c)Kẻ AH vuông góc với BC. So sánh EH và EC
ko biết viết độ ak -_- Góc A= 90o
a) Sin (B+C) = Sin (180-A) = Sin A b) Cos (A+B) = Cos ( 180-A) = Cos A c) Sin (\(\dfrac{B+C}{2}\)) = Sin \(\left(\dfrac{180-A}{2}\right)\)= Sin \(\left(90^0-\dfrac{A}{2}\right)\)= Cos \(\dfrac{A}{2}\)
d) Tan \(\left(\dfrac{A+C}{2}\right)\)= Tan\(\left(\dfrac{180-B}{2}\right)\)=Tan\(\left(90^0-\dfrac{B}{2}\right)\)= Cot \(\dfrac{B}{2}\)
ta có \(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{b+a}\)
=>\(S+3=3+\left(\dfrac{a}{b+c}+\dfrac{c}{b+a}+\dfrac{b}{c+a}\right)\)
hay \(S+3=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{b+a}+1\right)\)
=>\(S+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{b+a}\)
=>\(S+3=a+b+c\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
=>\(S+3=2007\cdot\dfrac{1}{90}\)
=>\(S+3=\dfrac{2017}{90}\)
=>S=\(\dfrac{1747}{90}\)
Tên:Đỗ Đình Dũng
Lớp 7A
Link :https://hoc24.vn/vip/dung182004