Chứng minh:
a) - Xét ΔABD và ΔAID có
Góc ABD = Góc AID (=90 độ)
AD chung
Góc BAD = Góc IAD ( AD là phân giác của góc A)
→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)
→AB = AI (2 cạnh tương ứng)
BD = BI (2 cạnh tương ứng)
b) - Xét ΔBMD và ΔICD có:
Góc MBD = Góc CID (=90 độ)
BD = BI (CMT)
Góc BDM = Góc IDC (Đối đỉnh)
→ ΔBMD = ΔICD (g.c.g)
→ DM = DC (2 cạnh tương ứng)
BM = IC ( nt )
c) - Ta có:
AB = AI (CMT) và BM = IC (CMT)
→ AB + BM = AI + IC → AM = AC
→ ΔAMC cân tại A (1)
- Mà:
ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ) (2)
Từ (1) và (2)
→ ΔAMC là tam giác đều
d) - Ta có: MD = MC (CMT) (3)
- Xét ΔIDC có góc DIC = 90 độ
góc ICD = 30 độ
→ ID = \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (4)
Từ (3) và (4)
→ ID = \(\frac{1}{2}\) MD
- Xong rồi nhé
- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy
- GT, KL bạn tự làm
- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi
- Tham khảo, chép xong thì đọc lại xem hiểu không
- Bài này không phải dạng vừa đâu!!
- Có gì cho Hon không nạ
- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann