HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a, \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x.\left(4x+2\right)=4x\left(2x+1\right)\)
b, \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[x^2+2xy+y^2-xz-yz+z^2-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Tên cũng được, chưa đến nỗi !
a) Số vừa chia hết cho 2 vừa chia hết cho 5 là: 480;2000;9010/
b) Số chia hết cho 2 nhưng không chia hết cho 5 là: 296;324.
c) Số chia hết cho 5 nhưng không chia hết cho 2 là: 345;3995
Tick nhoa?
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+125=x^3+8-x^3-12x^2-48x+64\)
\(\Leftrightarrow-12x^2+48x+61=-12x^2-48x+72\)
\(\Leftrightarrow48x+61=-48x-72\)
\(\Leftrightarrow x=\dfrac{-133}{96}\)
Đặt \(A=1.2+2.3+...+19.20\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+19.20.\left(21-18\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+19.20.21-18.19.20\)
\(\Rightarrow3A=19.20.21\)
\(\Rightarrow A=19.20.7=2660\)
Vậy A = 2660
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(B=\left|x-102\right|+\left|2-x\right|=\left|102-x\right|+\left|x-2\right|\ge\left|x-102+2-x\right|=100\)
Dấu " = " khi \(\left\{{}\begin{matrix}102-x\ge0\\x-2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le102\\x\ge2\end{matrix}\right.\)
Vậy \(MIN_B=100\) khi \(2\le x\le102\)
\(\left(x^2+1\right)^2-4x^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
chứng minh j?
\(B=-x^2+4x+4=-\left(x^2-4x-4\right)\)
\(=-\left(x^2-4x+4-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(=-\left(x-2\right)^2+\le8\)
Dấu " = " khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(MAX_B=8\) khi x = 2
b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{33}\)
\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)
\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)
\(=\dfrac{92}{5005}\)
\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)
Vậy...