\(\sqrt{\left(x-1\right)}=x-3\)
\(\Rightarrow\left|x-1\right|=\left(x-3\right)^2\)
\(\Rightarrow\left|x-1\right|=x^2-6x+9\)
+) Xét \(x\ge1\) có:
\(x-1=x^2-6x+9\)
\(\Leftrightarrow x^2-7x+10=0\)
\(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Thử lại: x = 5 ( t/m ), x = 2 ( không t/m )
+) Xét x < 1 có:
\(1-x=x^2-6x+9\)
\(\Leftrightarrow x^2+5x+8=0\)
\(\Leftrightarrow x^2+5x+\dfrac{25}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\)
Do \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) ( vô lí )
Vậy x = 5