Bài tập: Cho tam giác ABC vuông tại A, đường cao AH. Đường thẳng vuông góc với AC tại C cắt tia AH tại D.
a) Chứng minh: BC.CH = AD.AH = AB.CD.
b) Chứng minh: S△ABC.S△CAD.tan2của góc ACB.
c) Kẻ HE ⊥ AB tại E. Chứng minh BE = BC.cos3 của góc B.
d) Chứng minh: EH = \dfrac{AB2.AC}{BC2}\)
e) Gọi F là hình chiếu của H lên AC. CMR: SBEFC = S△ABC . (1- tan2 của gócACE).
f) Biết \dfrac{AB}{AC}\) = \dfrac{3}{4}\) và AH = 12cm . Tính AB, AC, BH, KH.