\(\dfrac{3x}{x-2}\) - \(\dfrac{x}{x-5}\) +\(\dfrac{6x}{\left(x-2\right)\left(x-5\right)}\) = 0
⇔ \(\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}\) - \(\dfrac{x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}\)+\(\dfrac{6x}{\left(x-2\right)\left(x-5\right)}\) = 0
⇔ \(3x\left(x-5\right)-x\left(x-2\right)+6x=0\)
⇔ \(3x^2-15x-x^2+2x+6x=0\)
⇔ \(2x^2-7x=0\)
⇔ \(x\left(2x-7\right)=0\\ \)
❄ \(x=0\)
❄ \(2x-7=0\)
⇔ \(x=\dfrac{7}{2}\)
\(S=\left\{0;\dfrac{7}{2}\right\}\)