A=2x+2√x+x√x−1x−√x−x√x+1x+√x(x>0,x≠1)A=2x+2x+xx−1x−x−xx+1x+x(x>0,x≠1)
=2x+2√x+(√x−1)(x+√x+1)√x(√x−1)−(√x+1)(x−√x+1)√x(√x+1)=2x+2x+(x−1)(x+x+1)x(x−1)−(x+1)(x−x+1)x(x+1)
=2x+2√x+x+√x+1√x−x−√x+1√x=2x+2√x+2√x=2x+2x+x+x+1x−x−x+1x=2x+2x+2x
=2(x+√x+1)√x=2(x+x+1)x
B=2√x−9x−5√x+6−√x+3√x−2−2√x+13−√x(x≥0,x≠4;9)B=2x−9x−5x+6−x+3x−2−2x+13−x(x≥0,x≠4;9)
=2√x−9(√x−2)(√x−3)−√x+3√x−2+2√x+1√x−3=2x−9(x−2)(x−3)−x+3x−2+2x+1x−3
=2√x−9−(√x+3)(√x−3)+(2√x+1)(√x−2)(√x−2)(√x−3)=2x−9−(x+3)(x−3)+(2x+1)(x−2)(x−2)(x−3)
=x−√x−2(√x−2)(√x−3)=(√x−2)(√x+1)(√x−2)(√x−3)=√x+1√x−3=x−x−2(x−2)(x−3)=(x−2)(x+1)(x−2)(x−3)=x+1x−3
C=(x+√x−1x√x−1−√x−1x+√x+1):1√x−1(x≥0,x≠1)C=(x+x−1xx−1−x−1x+x+1):1x−1(x≥0,x≠1)
=(x+√x−1(√x−1)(x+√x+1)−√x−1x+√x+1).(√x−1)=(x+x−1(x−1)(x+x+1)−x−1x+x+1).(x−1)
=x+√x−1−(√x−1)2(√x−1)(x+√x+1).(√x−1)=3√x−2x+√x+1