Câu trả lời:
\(A=x^2-5x+1=x^2+5x-\dfrac{21}{4}+\dfrac{25}{4}=\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{21}{4}\)
\(=\left[x^2+2.\dfrac{5}{2}.x+\dfrac{5}{2}^2\right]-\dfrac{21}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2-\dfrac{21}{4}\)
Do \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{5}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\forall x\)
Dấu '' = '' xảy ra khi \(x=-\dfrac{5}{2}\)
Vậy \(min_A=-\dfrac{21}{4}\) khi \(x=-\dfrac{5}{2}\)