Câu trả lời:
Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:
S = a(1-r^n)/(1-r)
Trong đó:
S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:
a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523
Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.