HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Trên cạnh AC lấy điểm E sao cho AE = AB.
Ta có: AB < AC nên AE < AC
Suy ra E nằm giữa A và C.
Xét ΔABD và ΔAED, ta có:
AB = AE (theo cách vẽ)
∠(BAD) = ∠(EAD) (gt)
AD cạnh chung
Suy ra: ΔABD = ΔAED (c.g.c)
Suy ra: BD = DE (2 cạnh tương ứng)
và ∠(ABD) = ∠(AED) (2 góc tương ứng)
Mà: ∠(ABD) + ∠B1= 180o (2 góc kề bù)
∠(AED) + ∠E1= 180o (2 góc kề bù)
Suy ra: ∠B1= ∠E1
Trong ΔABC ta có ∠B1là góc ngoài tại đỉnh B
Ta có: ∠B1 > ∠C (tính chất góc ngoài của tam giác)
Suy ra: ∠E1> ∠C
Suy ra: DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)
Vậy BD < DC.
Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< b+c/2
CMTT: BD< a+c/2 ; CE < a+b/2
Suy ra AM+BD+CE < a+b+c
Ta có BD+CE> 3/2 a
CMTT ta có:AM+CE > 3/2 b
AM+BD> 3/2 c
Suy ra 2(AM+BD+CE) > 3/2 ( a+c+c)
Do đó : AM+BD+CE > 3/4 ( a+b+c )