Chủ đề:
Bài 7: Tứ giác nội tiếpCâu hỏi:
Cho BC là dây cung cố định của đường tròn tâm O,bán kính R (0< BC < 2R). A là điếm di động trên cung lớn BC sao cho A ABCnhon. Các đường cao AD; BE; CF Của AABC cắt nhau tai H(D thuộc BC, E thuộc CA, F thuộc AB ). a) Chứng minh: 4 điểm A,E,H,F cùng thuộc một đường tròn và AE.AC = AF.AB b) góc FED c) Goil là trung điểm của BC. Chứng minh : AH = 210; Goi BE CF,cắt (O) tại PQ. Chứng minh: 2EF = PQ Kė đường thẳng d tiếp xúc với đường tròn (0)tại A. Chứng minh : d//EF và EH là phân giác của