HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1. entrance
2. improving
1. exactly
2. cultural
3. speaker
4. advertised
5. national
6. agreement
7. speakers
8. unable
9. qualification
10. edition
11. editor
12. possibility
13. reputation
Ta có: \(24< 25\)
\(\Leftrightarrow\sqrt[3]{24}< \sqrt[3]{25}\)
\(\Leftrightarrow\sqrt[3]{8.3}< \sqrt[3]{25}\)
\(\Leftrightarrow\sqrt[3]{8}.\sqrt[3]{3}< \sqrt[3]{25}\)
\(\Leftrightarrow2\sqrt[3]{3}< \sqrt[3]{25}\)
a) Điều kiện xác định: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne0\\\sqrt{x}+2\ne0\end{matrix}\right.\Leftrightarrow x>0\)
\(A=\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{x-4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\sqrt{x}+1+\sqrt{x}-2\)
\(=2\sqrt{x}-1\)
b) Điều kiện xác định: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+1\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(B=\left(5-\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(5+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left[5-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right].\left[5+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(=\left(5-\sqrt{x}\right).\left(5+\sqrt{x}\right)\)
\(=25-x\)
25. friendliness
26. interesting
27. pray
28. peacefully
29. differences
30. Unluckily
B
\(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{5}.\sqrt{5}.\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{5.4}+\sqrt{5}\)
\(=\sqrt{5}.\sqrt{5.\dfrac{1}{5}}+\dfrac{1}{2}.\sqrt{4}.\sqrt{5}+\sqrt{5}\)
\(=\sqrt{5}.\sqrt{1}+\dfrac{1}{2}.2.\sqrt{5}+\sqrt{5}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
1. Điều kiện xác định: \(x-1\ne0\Leftrightarrow x\ne1\)
Đặt \(\dfrac{1}{x-1}=a,\) khi đó hệ phương trình trở thành:
\(\left\{{}\begin{matrix}a+2y=6\\2a-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6-2y\\2\left(6-2y\right)-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6-2y\\12-4y-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6-2y\\7y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\y=1\end{matrix}\right.\)
Với a = 4, ta có: \(\dfrac{1}{x-1}=4\Rightarrow4\left(x-1\right)=1\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\) (nhận)
Vậy hệ phương trình có nghiệm là: \(\left(\dfrac{5}{4};1\right).\)
bỏ chữ nhận chỗ m = 0 nữa
Sửa lại
(2m + 5)2 - 4(2m + 1) > 0
<=> (2m + 5)2 - 4(2m + 5 - 4) > 0
<=> (2m + 5)2 - 4(2m + 5) + 16 > 0
<=> [(2m + 5)2 - 4(2m + 5) + 4] + 12 > 0
<=> (2m + 3)2 + 12 > 0