Bài 1.
a) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^2\left(x^2+2x\right)-\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left[2x\left(3x+2\right)-\left(3x+2\right)\right]\left(3-x\right)\)
\(=\left[6x^2+4x-3x-2\right]\left(3-x\right)\)
\(=\left[6x^2+x-2\right]\left(3-x\right)\)
\(=6x^2\left(3-x\right)+x\left(3-x\right)-2\left(3-x\right)\)
\(=18x^2-6x^3+3x-x^2-6+2x\)
\(=-6x^3+17x^2+5x-6\)
c) \(\left(x+3\right)\left(x^2+3x-5\right)\)
\(=x\left(x^2+3x-5\right)+3\left(x^2+3x-5\right)\)
\(=x^3+3x^2-5x+3x^2+9x-15\)
\(=x^3+6x^2+4x-15\)
d) \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=x^3-x^2+x+x^2-x+1\)
\(=x^3+1\)
e) \(\left(2x^3-3x-1\right)\left(5x+2\right)\)
\(=2x^3\left(5x+2\right)-3x\left(5x+2\right)-\left(5x+2\right)\)
\(=10x^4+4x^3-15x^2-6x-5x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)
f) \(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
Bài 2.
a) \(-2x^3y\left(2x^2-3y+5yz\right)\)
\(=-4x^5y+6x^3y^2-10x^3y^2z\)
b) \(\left(x-2y\right)\left(x^2y^2-xy+2y\right)\)
\(=x\left(x^2y^2-xy+2y\right)-2y\left(x^2y^2-xy+2y\right)\)
\(=x^3y^2-x^2y+2xy-2x^2y^3+2xy^2-4y^2\)
c) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
\(=\dfrac{2}{5}x^3y^2-2x^2y+4xy^2\)
d) \(\dfrac{2}{3}x^2y\left(3xy-x^2+y\right)\)
\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)
e) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
f) \(\left(\dfrac{1}{2}xy-1\right)\left(x^3-2x-6\right)\)
\(=\dfrac{1}{2}xy\left(x^3-2x-6\right)-\left(x^3-2x-6\right)\)
\(=\dfrac{1}{2}x^4y-x^2y-3xy-x^3+2x+6\)