HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
pt: \(x^2-2\left(m-1\right)x+m-3=0\) (m là tham số)
phương trình có hai nghiệm phân biệt tìm giá trị nguyên của m sao cho pt có 2 nghiệm thỏa mãn:
\(\left(\dfrac{1}{x_1}-\dfrac{1}{x_2}\right)^2=\dfrac{\sqrt{11}}{2}\)
cho pt \(x^2-2mx+2m-1=0\)
tìm m sao cho pt có 2 nghiệm thỏa mãn \(x_1^2-5x_1x_2+x_2^2=25\)
Cho pt: \(x^2-4x+m=0\) (m là tham số)
a) tìm giá trị của m để phương trình có các nghiệm \(x_1;x_2\) thỏa mãn \(x_1< x_2\) và \(x^{2_2}-x^{2_1}\)
Cho biểu thức : M= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn M
b) Tính M khi x= 11+\(6\sqrt{2}\)
c) tìm các giá trị x để M<1
Cho tam giác ABC cân tại A, đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB, AC.a) Biết BH=2cm, CH=8cm. TÍnh AH, AB.b) nếu AB=AC. chứng minh MA.MB=NA.NC
Cho biểu thức
P=\(\left(\dfrac{x+7}{x-2\sqrt{x}-3}+\dfrac{4}{3-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+6}\)
a) nêu đkxđ và rút gọn P
b) tìm giá trị x để biểu thức P nhận giá trị nguyên
cho các số thực dương x, y, z thỏa mãn x+y+z=1
chứng minh\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}=< 3\)