
\(8.\left(x+1\right)\left(x^2+3x+9\right)\)
\(=x\left(x^2+3x+9\right)+1\left(x^2+3x+9\right)\)
\(=x^3+3x^2+9x+x^2+3x+9=x^3+4x^2+12x+9.\)
\(9.\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x\left(x^2+3x+9\right)-3\left(x^2+3x+9\right)\)
\(=x^3+3x^2+9x-3x^2-9x-27\)\(=x^3-27.\)
\(10.\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x\left(x^2+2x+4\right)-2\left(x^2+2x+4\right)\)
\(=x^3+2x^2+4x-2x^2-4x-8=x^3-8.\)
\(11.\left(x+4\right)\left(x^2-4x+16\right)\)
\(=x\left(x^2-4x+16\right)+4\left(x^2-4x+16\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64=x^3+64.\)
\(12.\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x\left(x^2+3xy+9y^2\right)-3y\left(x^2+3xy+9y^2\right)\)
\(=x^3+3x^2y+9xy^2-3x^2y-9xy^2-27y^3=x^3-27y^3.\)
\(13.\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=x^2\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)-\dfrac{1}{3}\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=x^6+\dfrac{1}{3}x^4+\dfrac{1}{9}x^2-\dfrac{1}{3}x^4-\dfrac{1}{9}x^2-\dfrac{1}{27}=x^6-\dfrac{1}{27}.\)
\(4.\left(\dfrac{1}{3}x+2y\right)\cdot\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\dfrac{1}{3}x\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)+2y\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\dfrac{4}{3}xy^2-\dfrac{2}{9}x^2y+\dfrac{1}{27}x^3+\dfrac{2}{9}x^2y-\dfrac{4}{3}xy^2+8y^3\)
\(=\dfrac{1}{27}x^3+8y^3.\)