\(a.\left(x+2\right)\left(x^2-2x+4\right)=x\left(x^2-2x+4\right)+2\left(x^2-2x+4\right)\)
\(=x^3-2x^2+4x+2x^2-4x+8=x^3+8.\)
\(b.\left(x+2y+z\right)\left(x-2x-z\right)\)
\(=x\left(x-2x-z\right)+2y\left(x-2x-z\right)+z\left(x-2x-z\right)\)
\(=-x^2-xz-2xy-2yz-xz-z^2=-2xy-2yz-x^2-2xz-z^2.\)
\(c.\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x\left(x^2+3xy+9y^2\right)-3y\left(x^2+3xy+9y^2\right)\)
\(=x^3+3x^2y+9xy^2-3x^2y-9xy^2-27y^3=x^3-27y^3.\)
\(d.\left(x^2-3\right)\left(x^4+3x^2+9\right)=x^2\left(x^4+3x^2+9\right)-3\left(x^4+3x^2+9\right)\)
\(=x^6+3x^4+9x^2-3x^4-9x^2-27=x^6-27.\)
\(e.\left(5+3x\right)^3=5^3+3\cdot5^2\cdot3x+3\cdot5\cdot\left(3x\right)^2+\left(3x\right)^2\)
\(=125+225x+135x^2+27x^3.\)
\(g.\left(2x-1\right)\left(4x^2+2x+1\right)=2x\left(4x^2+2x+1\right)-1\left(4x^2+2x+1\right)\)
\(=8x^3+4x^2+2x-4x^2-2x-1=8x^3-1.\)