HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
`x/(x+y) + (2xy)/(x^2-y^2) - y(x+y)`
`= (x(x-y))/(x^2-y^2) + (2xy)/(x^2-y^2) - (y(x-y))/(x^2-y^2)`
`= (x^2 - xy + 2xy - xy + y^2)/(x^2-y^2)`
`= (x^2+y^2)/(x^2-y^2)`
`a, x/(x+3) + (2-x)/(x+3) = (x+2-x)/(x+3) = 2/(x+3)`
`b, (x^2y)/(x-y) - (xy^2)/(x-y) = (x^2y-xy^2)/(x-y) = (xy(x-y))/(x-y)= xy`
`c, (2x)/(2x-y) - (y)/(2x-y)`
`= (2x-y)/(2x-y) = 1`
`a, (3x^2y)/(2xy^5)`
`= (3x)/(2y^4)`
`b, (3x^2-3x)/(x-1)`
`= (3x(x-1))/(x-1)`
`= 3x`
`c, (ab^2-a^2b)/(2a^2+a)`
`= (b(a-b))/((2a+1))`
`d, (12(x^4-1))/(18(x^2-1)) = (2(x^2+1))/3`.
`a, ? = (3x+1)(x+1) = 3x^2 + 4x + 1`
`b, ? = (x^2+2x)(x+2) = x^3 +4x^2 + 4x`
`a, (3ac)/(a^3b) = (3c)/(a^2b)`
`(6c)/(2a^2b) = (3c)/(a^2b)`
Vậy hai phân thức `=` nhau
`b, (3ab-3b^2)/(6b^2) = (3b(a-b))/(6b^2) = (a-b)/(2b)`
Thiếu `c,`
`a, x ne 6`
`b, x ne -3y`
`c, x in RR`.
`a, A = (3x(x+1))/(x+1)^2 = (3x)/(x+1)`
Thay `x = -4` ta có: `(3.(-4))/(-4+1) = 4`.
`b, B = (b(a-b))/((a-b)(a+b)) = b/(a+b)`
Thay `a = 4; b =-2`
`-2/(4-2) = -1`
`(a^2-b^2)/(a^2b + ab^2) = ((a-b)(a+b))/(ab(a+b)) = (a-b)/(ab)`.
`(a-b)/(ab) = ((a-b)(a+b))/(ab(a+b)) = (a^2-b^2)/(ab(a+b))`
`a, (3x^2+6xy)/(6x^2) = (x+2y)/(3x)`
`b, (2x^2-x^3)/(x^2-4) = (x^2(2-x))/((x-2)(x+2))`
`= -x^2/(x+2)`
`c, (x+1)/(x^3+1) = 1/(x^2-x+1)`