Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AK và CI của tam giác ABC cắt nhau tại H (K ∊ BC, I ∊ AB). a) Chứng minh: Tứ giác BIHK nội tiếp được một đường tròn. b) Đường thẳng AK cắt đường tròn tại D (D khác A). Kẻ đường kính AF. Đường thẳng qua O và vuông góc với BC cắt đường tròn (O) tại E (E thuộc cung nhỏ DF). Chứng minh: AE là tia phân giác của góc DAF