Câu trả lời:
Áp dụng định lý phân giác:
BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)
⇔5BD=2BC⇒BD=25BC⇒BDBC=25⇔5BD=2BC⇒BD=25BC⇒BDBC=25
AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23
Qua D kẻ đường thẳng song song AC cắt AE tại F
Áp dụng định lý Talet:
FDAK=FEKE=DEAE=23FDAK=FEKE=DEAE=23
Talet cho tam giác BCK: FDCK=BDBC=25FDCK=BDBC=25
⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53
⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15
AK=AC−CK=9