\(\dfrac{ab}{\sqrt{5a^2+10ab+10b^2}}=\dfrac{ab}{\sqrt{5\left[b^2+\left(a+b\right)^2\right]}}=\dfrac{ab}{\sqrt{\left[b^2+\left(a+b\right)^2\right]\left(1^2+2^2\right)}}\le^{Bunhiacopxki}\dfrac{ab}{b.1+\left(a+b\right).2}=\dfrac{ab}{2a+3b}\)
\(\Rightarrow\dfrac{ab}{\sqrt{5a^2+10ab+10b^2}}\le\dfrac{ab}{2a+3b}\left(1\right)\)
Áp dụng bất đẳng thức Bunhiaxcopki dạng phân thức:
\(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{5^2}{2a+3b}\)
\(\Rightarrow\dfrac{25}{2a+3b}\le\dfrac{2}{a}+\dfrac{3}{b}\Rightarrow\dfrac{ab}{2a+3b}\le\dfrac{2b+3a}{25}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{ab}{\sqrt{5a^2+10ab+10b^2}}\le\dfrac{2b+3a}{25}\left(3\right)\)
Tương tự:
\(\dfrac{bc}{\sqrt{5b^2+10bc+10c^2}}\le\dfrac{2c+3b}{25}\left(4\right)\)
\(\dfrac{ca}{\sqrt{5c^2+10ca+10a^2}}\le\dfrac{2a+3c}{25}\left(5\right)\)
\(\left(3\right)+\left(4\right)+\left(5\right)\Rightarrow M\le\dfrac{a+b+c}{5}\)
Ta có: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3.3=9\)
\(\Rightarrow a+b+c\le3\)
\(\Rightarrow M\le\dfrac{a+b+c}{5}\le\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Vậy \(MaxM=\dfrac{3}{5}\)