Cho nửa đường tròn đường kính AB = 2R. C là điểm chính giữa của cung AB. Trên cung AC lấy điểm F bất kỳ. Trên dây BF lấy điểm E sao cho BE = AF. Chứng minh rằng:
a. ΔAFC = ΔBEC.
b. EFC là tam giác vuông cân.
c. Gọi D là giao điểm của AC với tiép tuyến tại B của nửa đường tròn, chứng minh rằng tứ giác BECD nội tiếp