HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh phân thức \(\dfrac{3-n}{n-4}\) là tối giản:
Cho biểu thức A = \(\dfrac{1}{x^3+3x^2+xy^2+3y^2}\)
a. Tìm điều kiện xác định của A
b. Tính giá trị của biểu thức A tại x = 0; y = 0
1 . Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
Chứng minh rằng với những giá trị thích hợp của biến x biểu thức sau có giá trị là một hằng số
A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^{\text{2}}}\right)\)