Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=2^{101}-2\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\).
\(B=1+3^2+3^3+...+3^{2009}\)
\(3B=3+3^3+3^4+...+3^{2010}\)
\(\Rightarrow3B-B=3^{2010}-7\)
\(\Rightarrow2B=3^{2010}-7\)
\(\Rightarrow B=\dfrac{3^{2010}-7}{2}\)
Vậy \(B=\dfrac{3^{2010}-7}{2}\).
\(C=4+4^2+4^3+...+4^n\)
\(4C=4^2+4^3+4^4+...+4^{n+1}\)
\(\Rightarrow4C-C=4^{n+1}-4\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
Vậy \(C=\dfrac{4^{n+1}-4}{3}\).