\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{1}{26.31}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(=1+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{11}+\frac{1}{11}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{31-1}{31}\)
\(=\frac{30}{31}\)
Vậy \(A=\frac{30}{31}\)
\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{31}\)
\(\Rightarrow A=\frac{30}{31}\)