\(C=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3C=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3C=3^2+3^3+...+3^{101}\)
\(\Rightarrow3C-C=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\)
\(\Rightarrow2C=3^{101}-3\)
\(\Rightarrow C=\dfrac{3^{101}-3}{2}\)
C = 3 + 32 + 33 + ... + 3100
=> 3C = 32 + 33 + ... + 3100 + 3101
=> 3C - C = 3101 - 3
=> 2C = 3101 - 3
=> C = \(\dfrac{3^{101}-3}{2}\)
@Yuuki Tenpouin