\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)
\(B=1-\dfrac{1}{2017}\)
\(B=\dfrac{2017}{2017}-\dfrac{1}{2017}\)
\(B=\dfrac{2016}{2017}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)
\(B=1-\dfrac{1}{2017}\)
\(B=\dfrac{2017}{2017}-\dfrac{1}{2017}\)
\(B=\dfrac{2016}{2017}\)
1) Rút gọn
A =\(\dfrac{\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+.......+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{19}+\dfrac{1}{20}}\)
2) Tìm x
a/ \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Giải típ hộ mik nha !
\(\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{2016}{2017}=\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2016}{2017}=\dfrac{n+1-2}{2.\left(n+1\right)}=\dfrac{2016}{2017}=\dfrac{n-1}{2.\left(n+1\right)}=\dfrac{2016}{2017}=2017.\left(n-1\right)=2016.2\left(n+1\right)=...\)
\(a.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
tinh:
a. \(\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}\)
b. \(\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3\)
c. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
Thực hiện phép tính sau:
1, B = \(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+..........+\(\dfrac{1}{2^{2017}}\)
2,\(\dfrac{12}{1.2}\).\(\dfrac{2^2}{2.3}\).\(\dfrac{3^2}{3.4}\).\(\dfrac{4^2}{4.5}\).\(\dfrac{5^2}{5.6}\)
Giúp mình nhé dấu (.) là nhân nha
Tính :
a) \(\dfrac{17}{23}.\dfrac{8}{16}.\dfrac{23}{17}.\left(-80\right).\dfrac{3}{4}\)
b) \(\dfrac{5}{11}.\dfrac{18}{29}-\dfrac{5}{11}.\dfrac{8}{29}+\dfrac{5}{11}.\dfrac{19}{29}\)
c) \(\left(\dfrac{13}{23}+\dfrac{1313}{2323}-\dfrac{131313}{232323}\right).\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)
d) \(\dfrac{1^2}{1.2}.\dfrac{2^{2^{ }}}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}.\dfrac{5^2}{5.6}.\dfrac{6^2}{6.7}.\dfrac{7^2}{7.8}.\dfrac{8^2}{8.9}.\dfrac{9^2}{9.10}\)
e) \(\dfrac{2^2}{3}.\dfrac{3^2}{8}.\dfrac{4^2}{15}.\dfrac{5^2}{24}.\dfrac{6^2}{35}\dfrac{7^2}{48}.\dfrac{8^2}{63}.\dfrac{9^2}{80}\)
tìm x:
a,\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right).\left(x-1\right)+\dfrac{1}{10}.x=x-\dfrac{9}{10}\)
b,\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right).\left(x-2\right)+x=\dfrac{149}{99}.x-\dfrac{98}{99}\)
\(A=\left(1-\dfrac{1}{2}\right)\cdot1-\dfrac{1}{3}\cdot......\cdot\left(1-\dfrac{1}{2016}\right)\cdot\left(1-\dfrac{1}{2017}\right)\)