Đề: So sánh hai phân số sau:
\(\dfrac{100^{100}-3}{100^{100}+1}\) và \(\dfrac{100^{100}+2}{100^{100}+6}\)
Bài làm:
\(\dfrac{100^{100}-3}{100^{100}+1}=\dfrac{100^{100}+1-4}{100^{100}+1}=\dfrac{100^{100}+1}{100^{100}+1}-\dfrac{4}{100^{100}+1}=1-\dfrac{4}{100^{100}+1}\)
\(\dfrac{100^{100}+2}{100^{100}+6}=\dfrac{100^{100}+6-4}{100^{100}+6}=\dfrac{100^{100}+6}{100^{100}+6}-\dfrac{4}{100^{100}+6}=1-\dfrac{4}{100^{100}+6}\)
Vì \(\dfrac{4}{100^{100}+1}>\dfrac{4}{100^{100}+6}\)
\(\Rightarrow1-\dfrac{4}{100^{100}+6}>1-\dfrac{4}{100^{100}+1}\)
Vậy \(\dfrac{100^{100}-3}{100^{100}+1}< \dfrac{100^{100}+2}{100^{100}+6}\).
So sánh hai phân số
\(\dfrac{1}{162}\)và \(\dfrac{2}{81}\)