\(A=2^3\left(1^3+2^3+3^3+...+50^3\right)\)
Đặt \(S=1^3+2^3+3^3+...+50^3\)
Ta có: \(n^3=\left(n-1\right)n\left(n+1\right)+n\)
Áo dụng ta được:
\(1^3=0+1\)
\(2^3=1.2.3+2\)
\(3^3=2.3.4+3\)
...
\(50^3=49.50.51+50\)
\(S=0+1+1.2.3+2+2.3.4+3+...+49.50.51+50\)
\(=\left(1.2.3+2.3.4+...+49.50.51\right)+\left(1+2+...+50\right)\)
\(=\dfrac{49.50.51.52}{4}+\dfrac{50\left(50+1\right)}{2}=1625625\)
\(\Rightarrow A=2^3.1625625=13005000\)