\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x\left(1+2^3\right)=144\)
\(\Leftrightarrow2^x=16\)
\(\Leftrightarrow x=4\)
\(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x.2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
2x + 2x.23=144
<=> 2x(1+23)=144
<=> 2x=16
<=> x=4