a ) \(3x^2-9x=0\)
\(\Leftrightarrow3x\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x=0\\x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
Vậy \(x\in\left\{0;3\right\}\)
b ) \(\left(x-3\right)\left(x-5\right)=0\)
\(\Rightarrow x-3\) và \(x-5\) trái dấu
Mà \(x-3>x-5\) nên \(x-3>0\) và \(x-5< 0\)
\(\begin{cases}x-3>0\Rightarrow x>3\\x-5< 0\Rightarrow x< 5\end{cases}\)
\(\Rightarrow3< x< 5;x\) nguyên \(\Rightarrow x=4\).
Vậy \(x=4\)