\((\dfrac{1}{12}+3\dfrac{1}{6}-30,75)x-8=\left(\dfrac{3}{5}+0,415+\dfrac{1}{200}\right):0,01\)
\(\dfrac{-55}{2}.x-8=\dfrac{51}{50}:0,01\)
\(\dfrac{-55}{2}.x-8=102\)
\(\dfrac{-55}{2}.x=110\)
\(x=-4\)
\((\dfrac{1}{12}+3\dfrac{1}{6}-30,75)x-8=\left(\dfrac{3}{5}+0,415+\dfrac{1}{200}\right):0,01\)
\(\dfrac{-55}{2}.x-8=\dfrac{51}{50}:0,01\)
\(\dfrac{-55}{2}.x-8=102\)
\(\dfrac{-55}{2}.x=110\)
\(x=-4\)
\(B=\dfrac{\left(\dfrac{11^2}{200}+0,415\right):0,01}{\dfrac{1}{12}-37,25+3\dfrac{1}{6}}\) tính B
tìm X
\(\dfrac{-9}{46}-4\dfrac{1}{23}:\left(3\dfrac{1}{4}-x:\dfrac{3}{5}\right)+2\dfrac{8}{23}=1\)
tìm x biết :
a) \(\left|x+\dfrac{1}{2}\right|\)=\(\dfrac{5}{2}\) b) \(\left|2x-\dfrac{2}{3}\right|\)+\(\dfrac{1}{3}\)=0 c) |x-2| = 2x + 1
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
Tìm số nguyên \(x\), biết rằng :
\(4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
a) \(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.\dfrac{30}{5^2}.....\dfrac{110}{10^2}.x=-20\)
b) \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right).x+2013=\dfrac{2014}{1}+\dfrac{2015}{2}+...+\dfrac{4025}{2012}+\dfrac{4026}{2013}\)
c) \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right).x=\dfrac{2012}{51}+\dfrac{2012}{52}+...+\dfrac{2012}{99}+\dfrac{2012}{100}\)
\(\left(6-2\dfrac{4}{5}\right)\cdot3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\)
Bài 1 : Tính nhanh
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
Bài 2:Tìm x biết
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right).\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right).\left(\dfrac{1}{64}-\dfrac{1}{5^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)