Tìm x :
a. x : \(\frac{3}{4}\) = 2x \(\times\) \(\frac{7}{3}\) + 5
b. 3x - 2 = 5x - 4
c. ( \(\frac{1}{1\times2}\)+ \(\frac{1}{2\times3}\)+ \(\frac{1}{3\times4}\)+ .... + \(\frac{1}{11\times12}\) ) \(\times\) x = 2
d. x : ( \(\frac{1}{1\times3}\) + \(\frac{1}{3\times5}\) + ..... + \(\frac{1}{101\times103}\) ) = 1
a, \(\frac{4x}{3}=\frac{14x}{3}+5\)
\(\frac{4x}{3}-\frac{14x}{3}=5\)
\(\frac{-10x}{3}=5\)
x=-1,5
b, 3x-5x=2-4
-2x=-2
x=1
c, \(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\) .x=2
\(\left(\frac{1}{1}-\frac{1}{12}\right).x=2\)
\(\frac{11}{12}.x=2\)
x=\(\frac{24}{11}\)
d, \(x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{101.103}\right)\)
\(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
x=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
x=\(\frac{1}{2}.\frac{102}{103}\)
x=\(\frac{51}{103}\)