a, 15 - 2 | x + \(\dfrac{1}{3}\)| = \(\dfrac{4}{7}\)
=>2| x + \(\dfrac{1}{3}\)| = 15 - \(\dfrac{4}{7}\)
=> 2 | x + \(\dfrac{1}{3}\)| =\(\dfrac{101}{7}\)
=> | x + \(\dfrac{1}{3}\)| = \(\dfrac{101}{14}\)
=> x+ \(\dfrac{1}{3}\)= \(\dfrac{101}{14}\) hoặc x +\(\dfrac{1}{3}\)= - \(\dfrac{101}{14}\)
+) x+\(\dfrac{1}{3}\)= \(\dfrac{101}{14}\)=> x = \(\dfrac{302}{3}\)
+) x + \(\dfrac{1}{3}\)= - \(\dfrac{101}{14}\)=> x =-\(\dfrac{317}{42}\)
Vậy ...........
b, \(\dfrac{13}{11}\).\(\dfrac{22}{26}\)-x2=\(\dfrac{7}{16}\)
=>1 -x2 = \(\dfrac{7}{16}\)
=> x2= \(\dfrac{9}{16}\)
=> x= \(\dfrac{3}{4}\)hoặc x = -\(\dfrac{3}{4}\)
Vậy ..................
\(a,15-2\left|x+\dfrac{1}{3}\right|=\dfrac{4}{7}\)
\(2\left|x+\dfrac{1}{3}\right|=15-\dfrac{4}{7}\)
\(2\left|x+\dfrac{1}{3}\right|=\dfrac{101}{7}\)
\(\left|x+\dfrac{1}{3}\right|=\dfrac{101}{7}:2\)
\(\left|x+\dfrac{1}{3}\right|=\dfrac{101}{14}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{101}{14}\) hoặc \(x+\dfrac{1}{3}=-\dfrac{101}{14}\)
\(x=\dfrac{101}{14}-\dfrac{1}{3}\) \(x=-\dfrac{101}{14}-\dfrac{1}{3}\)
\(x=\dfrac{302}{3}\) \(x=-\dfrac{317}{42}\)