1.\(\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot\left(\dfrac{1}{4}+1\right)..\left(\dfrac{1}{999}+1\right)\)
\(=\left(\dfrac{1}{2}+\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}+\dfrac{3}{3}\right)\cdot...\left(\dfrac{1}{999}+\dfrac{999}{999}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{1000}{999}\)\(=\dfrac{3\cdot4\cdot5\cdot...\cdot1000}{2\cdot3\cdot4\cdot...\cdot999}\)
\(=\dfrac{1000}{2}=500\).
2.
\(\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{1000}-1\right)\)
\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}-\dfrac{3}{3}\right)...\left(\dfrac{1}{1000}-\dfrac{1000}{1000}\right)\)
Thôi mai mk làm tiếp nha