Gọi số cần tìm là:\(\overline{abc}\)(a;b;c>0)
Theo bài ra ta có:\(\overline{ab}\)+\(\overline{ac}+\overline{ba}+\overline{bc}+\overline{ca}+\overline{cb}\)=2\(\overline{abc}\)
=>10a+b+10a+c+10b+a+10b+c+10c+a+10c+b=2(100a+10b+c)
=>22a+22b+22c=200a+20b+2c
=>2b+20c=178a
=>b+10c=89a
vì \(1\le b;c\le9\)=>\(\left\{{}\begin{matrix}1\le b\le9\\10\le10c\le90\end{matrix}\right.\)=>\(11\le b+10c\le99\) nên:
\(11\le89a\le99\)=>a=1
Khi đó:b+10c=89=>10c=89-b
Vì 10c\(⋮10\) nên=>89-b\(⋮10\) mà \(1\le b\le9\)
=>b=9
Khi đó:10c=89-9=80=>c=8
Vậy số đó là:198