Lập bảng \(\frac{12}{3n-1}\)là số nguyên
=> 12\(⋮\)3n-1 \(\in\)Ư( 12)={1;-1;-2;2;-3;3;-4;4;-;6;-12;12}
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 2/3 | 0 | 1 | -1/3 | 4/3 | -2/3 | 5/3 | -1 | 7/3 | -5/3 | 13/3 | -11/3 |
Vì n thuộc Z nên ...
Để A ∈ Z thì
12 ⋮ 3n - 1 ⇒ 3n - 1 ∈ Ư(12) = \(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
⇒ n ∈ \(\left\{\frac{2}{3};0;1;-\frac{1}{3};\frac{4}{3};-\frac{2}{3};\frac{5}{3};-1;\frac{7}{3};-\frac{5}{3};\frac{13}{3};-\frac{11}{3}\right\}\)
Hay n ∈ \(\left\{\pm\frac{2}{3};0;\pm1;-\frac{1}{3};\frac{4}{3};\pm\frac{5}{3};\frac{7}{3};\frac{13}{3};-\frac{11}{3}\right\}\)