\(B=5^{2016}+2^{2017}\)
\(B=\left(...5\right)+\left(...4\right)^{1008}.2\)
\(B=\left(...5\right)+\left(...6\right)^{504}.2\)
\(B=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy B có chữ số tận cùng là 7
\(C=7^{2015}+5\cdot2^{100}\)
\(C=\left(...9\right)^{1007}\cdot7+5\cdot\left(...4\right)^{50}\)
\(C=\left(...1\right)^{503}\cdot9\cdot7+5\cdot\left(...6\right)^{25}\)
\(C=\left(...3\right)+\left(...0\right)=\left(...3\right)\)
Vậy C có chữ số tận cùng là 3
\(D=405^n+2^{405}\)
\(D=\left(...5\right)+\left(...4\right)^{202}\cdot2\)
\(D=\left(...5\right)+\left(...6\right)^{101}\cdot2\)
\(D=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy D có chữ số tận cùng là 7
dấu chấm là dấu nhân nha , giúp mình với . Thank you mọi người nhiều !
Bạn có thể vận dụng công thức :
- Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi.
- Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.
- Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1.
- Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc
- Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
- Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3.
- Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2.
- Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng. 4n (n thuộc N) thì chữ số tận cùng là 6.
a) Ta có công thức: *Các chữ số tận cùng là 0;1;5;6 khi nâng lên luỹ thừa bất kì thì chữ số tận cũng vẫn không thay đổi. Vậy nên \(5^{2016}\) có chữ số tận cùng là 5
Các chữ số tận cùng là 4;9 khi nâng lên luỹ thừa bậc lẻ thì chữ số tận cũng vẫn không thay đổi. Vậy nên \(2^{2017}\) có chữ số tận cùng là 2
Từ đó suy ra: \(B=5^{2016}+2^{2017}=...5+...2=...7\)
vậy chữ số tận cùng của B là 7
b,c Tương tự