Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thỏ

Tìm các số tự nhiên x,y,z sao cho 0<x\(\le y\le z\) và xy+yz+zx= xyz

Hoang Hung Quan
16 tháng 3 2017 lúc 16:41

Do \(x,y,z>0\Rightarrow xyz\ne0\)

\(\Rightarrow\dfrac{xy}{xyz}+\dfrac{yz}{xyz}+\dfrac{zx}{xyz}=1\)

\(\Rightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=1\Rightarrow\dfrac{1}{x}< 1\Rightarrow x>1\)

\(x\le y\le z\Rightarrow\dfrac{1}{x}\ge\dfrac{1}{y}\ge\dfrac{1}{z}\)

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}=\dfrac{3}{x}\)

\(\Rightarrow1\le\dfrac{3}{x}\Rightarrow x\le3\)\(x>1\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Nếu \(x=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2}\Rightarrow\dfrac{1}{y}< \dfrac{1}{2}\Rightarrow y>2\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{1}{2}\Rightarrow y\le4\end{matrix}\right.\)

\(y>2\Rightarrow\left[{}\begin{matrix}y=3\\y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=3\Rightarrow z=6\\y=4\Rightarrow z=4\end{matrix}\right.\)

Nếu \(x=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{2}{3}\Rightarrow\dfrac{1}{y}< \dfrac{2}{3}\Rightarrow y>\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{2}{3}\Rightarrow y\le3\end{matrix}\right.\)

Do \(x\le y\Rightarrow\left\{{}\begin{matrix}y=3\\z=3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(3;3;3\right);\left(2;3;6\right);\left(2;4;4\right)\)

thỏ
16 tháng 3 2017 lúc 16:14

giúp nha, đúng mình tick cho


Các câu hỏi tương tự
Kudo Shinichi
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
mai xuanquy
Xem chi tiết
Anh Thư Trần
Xem chi tiết
GD Hồng Mỹ
Xem chi tiết
Team Liên Quân
Xem chi tiết
Đi theo xe rác nhặt xác...
Xem chi tiết
Lucy Heartfilya
Xem chi tiết
Bá Duy
Xem chi tiết