a/ \(2014^x+80=3^y\)
- Với \(x=0\Rightarrow2014^0+80+3^y\Leftrightarrow81=3^y\Leftrightarrow3^4=3^y\Rightarrow y=4\)
- Với \(x>0\) ta có \(2014\) chẵn \(\Rightarrow2014^x\) chẵn, lại có \(80\) chẵn \(\Rightarrow\) vế trái là một số chẵn
Mà \(3^y\) luôn lẻ với mọi \(y\in N\Rightarrow\) vế phải là số lẻ
Vế trái chẵn, vế phải lẻ \(\Rightarrow\) vô nghiệm
Vậy \(\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\) là cặp nghiệm tự nhiên duy nhất
b/
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}+...+\frac{1}{16}+...+\frac{1}{32}+...+\frac{1}{63}\)
\(A< 1+2.\frac{1}{2}+4.\frac{1}{4}+8.\frac{1}{8}+16.\frac{1}{16}+32.\frac{1}{32}\)
\(A< 1+1+1+1+1+1=6\) (đpcm)