\(\Leftrightarrow\frac{6+ab}{6a}=\frac{1}{3}\)
\(\Rightarrow18+3ab=6a\)
\(\Leftrightarrow\frac{3ab+18}{6}=3+\frac{ab}{2}=a\)
Để a nguyên thì \(ab⋮2\Rightarrow ab=2k\left(k\in Z\right)\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=k\end{matrix}\right.\\\left\{{}\begin{matrix}a=k\\b=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(2;k\right);\left(k;2\right)\)
