a) \(\left(x+3\right)\left(y+2\right)=1\)
\(\Rightarrow\left[\begin{matrix}x+3=1\\y+2=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
b) \(\left(x-1\right)\left(x+y\right)=33\)
\(\Rightarrow x-1=33\Rightarrow x=34\)
\(\Rightarrow\left(34-1\right)\left(34+y\right)=33\)
\(=33.\left(34+y\right)=33\)
\(\Rightarrow34+y=33:33\)
\(34+y=1\Rightarrow y=35\)
Vậy : \(\left[\begin{matrix}x=34\\y=35\end{matrix}\right.\)
b) \(\left(x-1\right)\left(x+y\right)=33\)
\(\Rightarrow x-1=33\Rightarrow x=34\)
\(33.\left(34+y\right)=33\)
\(\Rightarrow34+y=33:33\)
\(34+y=1\Rightarrow y=-33\)
Vậy : \(\left[\begin{matrix}x=34\\y=-33\end{matrix}\right.\)