\(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
\(A=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+....+\frac{1}{31.37}\)
\(A=\frac{6}{6}\left(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+...+\frac{1}{31.37}\right)\)
\(A=\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right)\)
\(A=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+....+\frac{1}{31}-\frac{1}{37}\right)\)
\(A=\frac{1}{6}\left(1-\frac{1}{37}\right)\)
\(A=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
\(A=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
A = \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
A = \(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+...+\frac{1}{31.37}\)
A = \(\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{31}-\frac{1}{37}\right)\)
A = \(\frac{1}{6}.\left(1-\frac{1}{37}\right)\)
A = \(\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)