\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\)
Tính
B = \(\left(\dfrac{1}{4}-1\right)+\left(\dfrac{1}{9}-1\right)+\left(\dfrac{1}{16}-1\right)....\left(\dfrac{1}{400}-1\right)\)
1, so sánh
A=\(\left(\dfrac{1}{80^{ }}\right)^7\)
B=\(\left(\dfrac{1}{243}\right)^6\)
Giúp mk nhé mk tick cho nha!!!
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
Tính :
a, \(\dfrac{3\cdot13-13\cdot18}{15\cdot40-80}\);
b, \(\dfrac{18\cdot34+\left(-18\right)\cdot124}{-36\cdot17+9\cdot\left(-52\right)}\);
c, \(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}+\dfrac{-0,25\cdot\dfrac{-2}{3}-0,75:\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)}{\left|-1\dfrac{1}{2}\right|\cdot\left(\dfrac{-2}{3}-75\%:\dfrac{3}{-2}\right)}\).
\(\left(\dfrac{2}{3}+\dfrac{2}{13}+\dfrac{2}{11}+\dfrac{2}{6}\right)\) \(\left(\dfrac{5}{4}+\dfrac{5}{7}+\dfrac{5}{6}+\dfrac{5}{11}\right)\)
___________________ X ___________________
\(\left(\dfrac{4}{3}+\dfrac{4}{13}+\dfrac{4}{11}+\dfrac{4}{6}\right)\) \(\left(\dfrac{9}{4}+\dfrac{9}{7}+\dfrac{9}{6}\dfrac{9}{11}\right)\)
Tính:
\(B=\left(\dfrac{12}{13}+7\right)+\left(-8+\dfrac{1}{13}\right)\)
so sanh
M=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)va \(\dfrac{1}{2}\)
B=\(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}va\dfrac{9}{10}\)
C=\(\dfrac{10}{17}+\dfrac{8}{15}+\dfrac{11}{16}va2\)
\(\text{Thực hiện phép tính một cách hợp lý nhất (nếu có thể):}\)
\(1\)) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right)^3.\left|-3\right|}{7}\)
\(2\)) \(75\)\(\text{%}\)\(-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)