1. Ta có : (\(\dfrac{-3}{8}\))3 < 0
(\(\dfrac{8}{243}\))3 > 0
=> (\(\dfrac{-3}{8}\))3 < (\(\dfrac{8}{243}\))3
@Cuber Việt
\(\left(\dfrac{-3}{8}\right)^3< 0< \left(\dfrac{8}{243}\right)^3\)
Vậy \(\left(\dfrac{-3}{8}\right)^3< \left(\dfrac{8}{243}\right)^3\)
\(A=\dfrac{34}{7\cdot13}+\dfrac{51}{13\cdot22}+\dfrac{85}{22\cdot37}+\dfrac{68}{37\cdot49}\\ =\dfrac{17}{3}\cdot\dfrac{6}{7\cdot13}+\dfrac{17}{3}\cdot\dfrac{9}{13\cdot22}+\dfrac{17}{3}\cdot\dfrac{15}{22\cdot37}+\dfrac{17}{3}\cdot\dfrac{12}{37\cdot49}\\ =\dfrac{17}{3}\cdot\left(\dfrac{6}{7\cdot13}+\dfrac{9}{13\cdot22}+\dfrac{15}{22\cdot37}+\dfrac{12}{37\cdot49}\right)\\ =\dfrac{17}{3}\cdot\left(\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{49}\right)\\ =\dfrac{17}{3}\cdot\left(\dfrac{1}{7}-\dfrac{1}{49}\right)\\ =\dfrac{17}{3}\cdot\dfrac{6}{49}\\ =\dfrac{34}{49}\)