a)
\(A=1+5+5^2+5^3+................+5^{99}\)
\(\Rightarrow5A=5+5^2+5^3+................+5^{99}+5^{100}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+.........+5^{99}+5^{100}\right)-\left(1+5+5^2+.......+5^{99}\right)\)
\(\Rightarrow4A=5^{100}-1\)
\(\Rightarrow A=\dfrac{5^{100}-1}{4}\)
Ta có :
\(A=\dfrac{5^{100}-1}{4}< B=\dfrac{5^{100}}{4}\Rightarrow A< B\)
b) Chưa có nghĩ ra!!
a, \(A=1+5+5^2+...+5^{100}\\ =>5A=5+5^2+5^3+...........+5^{101}\\ =>5A-A=\left(5+5^2+5^3+......+5^{101}\right)-\left(1+5+5^2+...5^{100}\right)\\ 4A=5^{101}-1\\ =>A=\dfrac{5^{101}-1}{4}->\left(1\right)\)
Theo đề: \(B=\dfrac{5^{101}}{4}->\left(2\right)\)
Từ (1) và (2), ta thấy: \(\dfrac{5^{101}-1}{4}< \dfrac{5^{101}}{4}\\ =>A< B\)
a) A= 1+5+52+53+..........+599+5100
5A= 5+52+53+54+..........+5100+5101
5A-A= (5+52+53+54+......+5100+5101) - (1+5+52+53+.....+599+5100)
4A= 5101-1
A= \(\dfrac{5^{101}-1}{4}\)
Vì A= \(\dfrac{5^{101}-1}{4}\)< B= \(\dfrac{5^{101}}{4}\) nên A < B
a, \(A=1+5+5^2+...+5^{99}+5^{100}\)
\(5A=5\left(1+5+5^2+...+5^{99}+5^{100}\right)\)
\(5A=5+5^2+5^3+...+5^{100}+5^{101}\)
\(4A=5A-A=\left(5+5^2+5^3+...+5^{100}+5^{101}\right)-\left(1+5+5^2+...+5^{99}+5^{100}\right)\) \(4A=5^{101}-1\)
\(A=\dfrac{5^{101}-1}{4}\)
\(A=\dfrac{5^{101}-1}{4}< \dfrac{5^{101}}{4}=B\)
\(\Rightarrow A< B\)