Bài 6: So sánh phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Chí Thành

So sánh:

a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\)\(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)

b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Hebico may mắn
12 tháng 6 2018 lúc 7:56

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Hebico may mắn
12 tháng 6 2018 lúc 14:53

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)

Hebico may mắn
13 tháng 6 2018 lúc 8:27

Mình sửa kết luận

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}< \dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

Nguyễn Chí Thành
12 tháng 6 2018 lúc 8:09

bạn trả lời nốt câu a đi


Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Linh Đinh
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Phương Mai
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Trần Khởi My
Xem chi tiết