\(\dfrac{8^9+12}{8^9+7}=\dfrac{8^9+7+5}{8^9+7}=1+\dfrac{5}{8^9+7}\)
\(\dfrac{8^{10}+4}{8^{10}-1}=\dfrac{8^{10}-1+5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\)
Vì \(8^{10}-1>8^9+7\)
\(\Rightarrow\dfrac{5}{8^{10}-1}< \dfrac{5}{8^9+7}\)
\(\Rightarrow\)\(1+\dfrac{5}{8^{10}-1}< 1+\dfrac{5}{8^9+7}\)
\(\Rightarrow\) A < B
\(A=\dfrac{8^9+12}{8^9+7}=\dfrac{8^9+7+5}{8^9+7}=\dfrac{8^9+7}{8^9+7}+\dfrac{5}{8^9+7}=1+\dfrac{5}{8^9+7}\\ B=\dfrac{8^{10}+4}{8^{10}-1}=\dfrac{8^{10}-1+5}{8^{10}-1}=\dfrac{8^{10}-1}{8^{10}-1}+\dfrac{5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\\ \dfrac{5}{8^9+7}>\dfrac{5}{8^{10}-1}\Rightarrow1+\dfrac{5}{8^9+7}>1+\dfrac{5}{8^{10}-1}\Rightarrow A>B\)