Áp dụng công thức \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) \(\left(a;b;m\in N\right)\)
Ta có : \(A=\dfrac{5^{12}+1}{5^{13}+1}< 1\)
\(\Leftrightarrow A=\dfrac{5^{12}+1}{5^{13}+1}< \dfrac{5^{12}+1+4}{5^{13}+1+4}=\dfrac{5^{12}+5}{5^{13}+5}=\dfrac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)
\(\Leftrightarrow A< B\)