a , Ta có :
A = \(2^0+2+2^2+...+2^{2010}\)
=> 2A = \(2+2^2+...+2^{2010}+2^{2011}\)
=> A = 2A-A = \(2^{2011}-2^0=2^{2011}-1\)= B
b , Ta có A = 2009.2011=2009(2010+1)=2009.2010+2009
B = 20102 = 2010.2010=(2009+1)2010=2009.2010+2010
Vì 2010>2009 => 2009.2010+2009<2009.2010+2010 hay A<B
c , Ta có : A = \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
B = \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì 102410 > 100010 => A < B
\(A=2^0+2^1+2^2+2^3+....+2^{2010}\)
\(2A=2^1+2^2+2^3+2^4+.....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+2^4+.....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)\(A=2^{2011}-2^0=2^{2011}-1\)
\(A=B=2^{2011}-1\)
\(A=2009.2011=2009.\left(2010+1\right)=2009.2010+2011\)
\(B=2010^2=2010.2010=2010\left(2009+1\right)=2010.2009+2010\)
\(A>B\)
\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
\(A< B\)
\(A=333^{444}=\left(333^4\right)^{111}=\left(3^4.111^4\right)^{111}=\left(81.111^4\right)^{111}\)
\(B=444^{333}=\left(444^3\right)^{111}=\left(4^3.111^3\right)^{111}=\left(64.111^3\right)^{111}\)
\(A>B\)
\(A=3^{150}\)
\(B=5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(A< B\)