Ta có :
\(\xrightarrow[34^{18}>32^{18}=\left(2^5\right)^{18}=290]{63^{15}< 64^{15}=\left(2^6\right)^{15}=2^{90}}\Rightarrow63^{15}< 54^{18}\)
a)
Ta có:
\(63^{15}< 64^{15}\Rightarrow63^{15}< \left(2^5\right)^{15}\Rightarrow63^{15}< 2^{90}\)
\(34^{18}>32^{18}\Rightarrow34^{18}>\left(2^5\right)^{18}\Rightarrow34^{18}>2^{90}\)
\(\Leftrightarrow34^{18}>63^{15}\)
b)
\(55^{66}=\left(55^6\right)^{11}=330^{11}\)
\(66^{55}=\left(66^5\right)^{11}=330^{11}\)
\(\Leftrightarrow55^{66}=66^{55}\)